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Abstract: The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respi-
ratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis
of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we
analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complica-
tions. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor
family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to
many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation
and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit
NREF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the
use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflamma-
some inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe
SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2
replication, the inflammatory response, and transmembrane protease serine 2 activation, which for
the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor.
Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute
respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) [1].

SARS-CoV-2 is an enveloped, non-segmented, positive sense RNA virus, widely
distributed in humans and other mammals [2,3]. SARS-CoV-2 is dissimilar from the coron-
aviruses recognized to induce the ordinary cold, but it has been shown to have the same
characteristics as the zoonotic SARS coronavirus (SARS-CoV) [4] and the Middle East
respiratory syndrome (MERS) coronavirus [5]. Patients affected by COVID-19 often display
no symptoms or mild symptoms (fever, cough, myalgia, and fatigue) and usually have
a good prognosis. Many of these cases, however, progress to a more severe form of the
illness, especially in older men experiencing other contemporary serious diseases [2,6-8].
Severe patients can suffer from symptoms correlated with lung [2,8,9], heart [8,10,11],
kidney [8,12,13], neurological [14,15], gastrointestinal [16] and liver [9,16-18] injuries. Fur-
thermore, there may be immune [9,12,19,20] and coagulation [21,22] impairment. Globally,
as of December 27, 2020, there have been 79,232,555 confirmed COVID-19 cases, including
1,754,493 deaths [23].

Angiotensin converting enzyme 2 (ACE2) offers an access receptor for SARS-CoV-2
and SARS-CoV in humans by binding to the viral membrane spike (S) protein [24,25]. The
quick recognition of ACE2 as SARS-CoV-2 receptor is mostly attributable to its recognition
as the receptor for SARS-CoV about 17 years ago. In that case, ACE2 was recognized
as the functional receptor for SARS-CoV after the fusion protein gene of SARS-CoV was
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reported [26]. By means of in vitro studies, Li et al. [27] found that: (1) ACE2 attached
to the SARS-CoV S1 protein; (2) a soluble variety of ACE2, but not ACE1, inhibited
the binding of the S1 protein with ACE2; (3) SARS-CoV reproduced in a very intense
manner in ACE2-transfected, but not mock-transfected, cells. Furthermore, studies in vivo
have clearly shown that ACE2 is a pivotal SARS-CoV receptor [28]. Here, we review the
molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS)
and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-
inflammatory therapies to prevent severe complications.

2. SARS-CoV-2 Cell Entry Mechanisms
2.1. SARS-CoV-2 Structural Basis

Like SARS-CoV, SARS-CoV-2 has four principal structural proteins: spike (S), envelope
(E), membrane (M) and nucleocapsid (N), together with several additional proteins [29,30]
(Figure 1). The S glycoprotein is a transmembrane protein (molecular weight of about
150 kDa) found in the virus outer portion [31]. Like SARS-CoV, S protein occurs as a trimer,
with three receptor-binding S1 heads being placed on top of a membrane fusion S2 stalk [31]
(Figure 1). S1, which binds to the peptidase domain of ACE2, is called the receptor-binding
domain (RBD), while S2 catalyzes the membrane fusion, thus releasing the genetic material
into the cells [31]. The crystal structures of the RBD of the S protein of SARS-CoV-2, both
non-complexed [32] (protein data bank code 6VXX, https:/ /www.rcsb.org (accessed on
31 December 2020)) or complexed with human ACE2 [33] (protein data bank code 6M0]J,
https:/ /www.rcsb.org (accessed on 31 December 2020)) have been published previously.
Recent studies, however, have established that there are slight differences between SARS-
CoV-2 and SARS-CoV in receptor recognition [34]; these dissimilarities allow SARS-CoV-2
RBD to possess a slightly higher ACE2 receptor affinity than RBD of SARS-CoV [31],
even though it results in being less accessible [32,35]. To retain its elevated infectivity
despite a low accessibility, SARS-CoV-2 uses activation of host proteases, and this process
crucially determines the infectivity and pathogenesis of SARS-CoV-2 infection [31]. In this
context, it has previously been established that the pre-activation of furin, a host proprotein
convertase [35,36], increases SARS-CoV-2 entrance into cells expressing ACE2 receptor by
binding to a polybasic sequence motif at the S1/52 border of the virus [31]. Furin-cleaved
substrates then link to neuropilin-1 (NRP1), facilitating SARS-CoV-2 infectivity [36,37].
Moreover, transmembrane protease serine 2 (TMPRSS2) and lysosomal cathepsins, in
addition to forcing SARS-CoV-2 entrance, have an additional impact with furin on SARS-
CoV-2 entry [31]. Entered-SARS-CoV-2 will subsequently release its genomic material in
the cytoplasm and be translated into the nuclei [38].
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Figure 1. (a) SARS-CoV-2 structure; (b) Schematic drawing of SARS-CoV-2 Spike (S) protein. S1, receptor-
binding subunit; S2, membrane fusion subunit; FP, fusion protein; RBD, receptor binding domain.

2.2. Structural Basis and Function of ACE2 Receptor

The renin-angiotensin system (RAS) plays a role in controlling blood volume and
systemic vascular resistance, which at the same time affect cardiac output and arterial
pressure [39]. ACE, a dipeptidyl carboxypeptidase in the RAS, converts the inactive
angiotensin (Ang) I into the active and effective vasoconstrictor Ang II and inhibits the
vasodilator Bradykinin [40]. ACE2 counterbalances ACE to a great extent by converting
Ang I into Ang 1-9, an inert variety of Ang. It can also break down and hydrolyze the
vasoconstrictor Ang II, into Ang 1-7, which acts as a strong vasodilator [41]. The ACE2
crystal structure and RBD of the S protein of SARS-CoV-2 complexed with human ACE2
have previously been reported [33,42] (protein data bank codes 1R42 and 6M0]J, respectively,
https://www.rcsb.org (accessed on 31 December 2020)). As just reviewed [43,44], ACE2 has
multiple crucial protecting roles against hypertension, cardiovascular and lung diseases,
and diabetes mellitus. Furthermore, the control of gut dysbiosis and vascular permeability
by ACE2 has come out as an intrinsic mechanism of pulmonary hypertension and diabetes-
related cardiovascular complications [44].

Very recently, ACE2 has been garnering widespread interest as a functional SARS-CoV-
2 and SARS-CoV virus receptor by binding to the viral S protein, in this way contributing
to pathogenesis of SARS [11,24,25,27]. ACE2 is ubiquitously expressed, with the highest
levels in the epithelial cells of the lung, kidney and cardiomyocytes [45], although there
is no lack of discordant voices, mostly for lung tissue [46]. Furthermore, recent studies
based on single-cell RN A-sequence (scRNA-seq) data analysis have reported that ACE2
is widespread in many organs, including the lungs, heart, esophagus, kidneys, bladder,
ileum, oral mucosa, and, particularly in the case of type Il alveolar cells, cardiomyocytes,
kidney proximal tubule cells, ileum and esophagus epithelial cells, and bladder urothe-
lial cells [47]. Thank to this diffuse presence, ACE2 is involved in virus infection and
diffusion. In addition, it has previously been found that infection with SARS-CoV and
SARS-CoV-2 causes ACE2 shedding with subsequent downregulation of surface ACE2
expression [28,48]. In this context, in a small group of severe COVID-19 patients, Ang 11
plasma concentration was found to be significantly higher than in healthy controls [49],
strengthening the hypothesis of a direct link between tissue ACE2 downregulation with
systemic RAS imbalance.

As shown in Figure 2, recent evidence has shown that ectodomain shedding of ACE2
is mediated by ADAM17 (a disintegrin and metalloproteinasel7), which in turn is upregu-
lated by endocytosed SARS-CoV-2 S proteins [50] and other mechanisms [51-54].

The available body of facts indicates that Ang II binding to AT1R also controls the acti-
vation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [NOX] [54,55],
one of the most important determinants of reactive oxygen species (ROS) generation.
Hence, the SARS-CoV-2-induced ACE2 downregulation increases the binding of Ang II
to AT1R, which, by triggering NOX, causes oxidative stress (OS) and inflammation in
accordance with the COVID-19 severity [46].
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Figure 2. Schematic diagram of SARS-CoV-2 effects on renin angiotensin system. ACE, angiotensin-converting enzyme;

ACE2, angiotensin-converting enzyme 2; Ang II, Angiotensin II; Adam-17, a disintegrin and metalloproteinasel?; AT1R,

angiotensin II type-1 receptor; TMPRSS2, transmembrane protease serine 2.

3. TMPRSS2 and SARS-CoV-2

One crucial discovery in learning how SARS-CoV-2 enters into the cells involves the
role of TMPRSS?2, a cell-surface protein [56] (Figure 2) that was identified in 2001 in the
epithelia of the gastrointestinal, urogenital, and respiratory tracts of mouse and humans,
although TMPRSS2 expression in human dominates in the prostate [57]. The crystal
structure of TMPRSS2 has previously been published ([58], protein data bank code SAFW,
https:/ /www.rcsb.org (accessed on 31 December 2020)). As for the expression of TMPRSS2
in the lung and bronchial branches, a very recent study using the scRNA-seq method
showed that the highest expression of TMPRSS2 was in alveolar type 2 cells. Interestingly,
these cells also presented the greatest expression of ACE2 [59-62]. Since SARS-CoV-2 has
a furin cleavage site in its S protein, with the potential to increase SARS-CoV-2 binding
to ACE2 receptor [31], the authors also detected a preference for co-expression for any
association of ACE2, TMPRSS2 and/or furin expression [59]. Accordingly, the priming of
SARS-CoV-2 S protein by furin would hypothetically make many more cells susceptible to
infection, as compared to S protein priming by TMPRSS2 alone [59]. Furin activity first
causes the generation of two non-covalently associated proteins, S1 and 52 [32,60,61], with
the TMPRSS2 further priming S2 [57]. Then, the C terminus of the S1 protein may bind to
the NRP1, which significantly potentiates SARS-CoV-2 infectivity [36,37]. In this context,
however, it has been reported that cells expressing NRP1 alone only play a small part in
SARS-CoV-2 infection [36], whereas its co-expression with ACE2 and TMPRSS2 greatly
intensified infection [36].

Finally, it has to be pointed out that TMPRSS2 has been identified in prostate cancer,
and that its expression was upregulated by androgens [62,63]. Previous reports showed
that androgen receptors are expressed in the human respiratory tract epithelium, mainly in
type 2 alveolar and bronchial epithelial cells [64]. Since growing data support the concept
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that male gender is a factor associated with a significantly increased risk of severe events
and death from COVID-19 [12,65,66], the strong up-regulation of TMPRSS2 by androgens
raises the theory that the male prevalence in the COVID-19 pandemic could partially be
explained by androgen-driven TMPRSS2 increase [67]. The available data on this point,
however, are discrepant [67], and further studies are needed to fully clarify this topic.

4. Oxidative Stress and Inflammation Associated with SARS-CoV-2 Infection
4.1. Oxidative Stress (OS) in SARS-CoV-2 Infection

It is known that OS arises whenever there is an imbalance between ROS formation and
antioxidant defenses. Alterations of the redox state towards oxidant conditions in infected
cells is one of the key events in respiratory viral infections that is linked to inflammation
and subsequent tissue damage [68-70]. Recent evidence indicates that OS play a crucial role
also in COVID-19 infection [71-75]. Several in vitro and in vivo studies have shown that
ROS overproduction induced by respiratory viruses is partially mediated by the activity of
NOX (reviewed in [69]). As reported above, ACE2 shedding caused by SARS-CoV-2 fusion
may be strictly related to RAS imbalance [43,47], and there is now evidence that Ang II
controls NOX activation [54,55] (Figure 3). It has been suggested that NOX2 is a key event
in killing bacteria and fungi, but it does not efficiently function against viruses [71]. In this
regard, a recent study shows that OS induced by NOX2 activation is linked with severe
clinical outcome and thrombotic events in COVID-19 patients [76]. ACE2 downregulation
and OS are also associated with endothelial dysfunction via NOX activation and reduced
availability of nitric oxide [77]. Furthermore, oxidized phospholipids (OxPLs), which are
a product of OS and have been detected in the lungs of SARS-CoV patients [78], were
found to be one of the main triggers of acute lung injury. As a matter of fact, OxPLs
were shown to promote tissue factor expression [78], to activate endothelial cells to recruit
monocytes [79,80], and to trigger macrophage activation through Nuclear Factor-«B (NF-
kB) pathway [78]. It remains to be elucidated whether analogous pathways are also
involved in SARS CoV-2 infection.

It is well recognized that the levels of cellular free iron must be tightly regulated to
avoid ROS generation via the Fenton reaction [81]. Upon SARS-CoV-2 infection, IL-6 in the
cytokine storm increases ferritin and the production of hepcidin, which plays a main role in
iron regulation. Since iron is sequestered by hepcidin in the enterocytes and macrophages,
intracellular ferritin is augmented, leading to a reduced iron efflux from the cells. The
stored iron may increase intracellular labile iron (II) pool and Fenton reaction, producing
lipid ROS, and lead to ferroptosis, a novel form of regulated cell death [81]. In COVID-19
patients, the documented iron metabolism alterations may cause iron accumulation and
overload, triggering ferroptosis in the cells of multiple organs [82,83].

Many lines of evidence show that viruses may also generate OS per se [69,70]. With
regard to SARS-CoV, the viral protease 3CLpro has been previously shown to increase
ROS generation in HL-CZ cells, with subsequent cell apoptosis and NF-kB-activation [84].
Another SARS-CoV protease, the 3a protein, has been linked with mitochondrial cell death
pathway activation by triggering OS [69].

The mitochondrial respiratory chain is the main and most significant source of cel-
lular ROS. However, while mitochondrial ROS production was once seen as merely an
accidental by-product of oxygen metabolism of mitochondrial respiratory chain, it is now
clear that ROS contribute to various signaling pathways [85]. Depending on the context
and triggering stimuli, mitochondrial ROS production can lead to different cellular re-
sponses such as adaptation to hypoxia, differentiation, autophagy, inflammation, or to
an immune response [86]. In general, viruses can modify mitochondrial dynamics in a
highly specific manner so that they can successfully replicate [87]. Among the different
mechanisms implicated, there are mitochondrial DNA damage, changes in mitochondrial
membrane potential, variations in mitochondrial metabolic pathways and calcium home-
ostasis, modifications in number and distribution of mitochondria into the cells, weakening
of antioxidant defense, and augmented OS [87,88]. Upon infection, viruses completely rely
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on host cell molecular machinery to survive and replicate [87,88]. Mitochondria defend
host cells from SARS-CoV-2 virus through several mechanisms including cellular apoptosis,
ROS production, autophagy, mitochondrial antiviral signaling system (MAVS) activation,
DNA-dependent immune activation, and other things [89]. Current knowledge of how
SARS-CoV-2 infection affects mitochondria and their ROS generation is limited. A prior
study on SARS-CoV [90] showed that open reading frame-9b (Orf9b), one of the accessory
proteins of the virus [91], alters host cell mitochondria morphology, disrupts MAVS, in-
hibits interferon (IFN) production and enhances autophagy, a cellular mechanism activated
by ROS [92]. Consistent with the findings of SARS-CoV, Gordon et al. [93] recently re-
ported that SARS-CoV-2 Orf9b interacts with mitochondrial translocase of outer membrane
(TOM)70, although the functional consequences of this association were not examined.
Very recently, Jiang et al. [94] reported that SARS-CoV-2 Orf9b localizes to the membrane of
mitochondria and suppresses IFN-I response through association with TOM70. The altered
activity of TOM70, by reducing constitutive calcium transfer to mitochondria, dampens
mitochondrial respiration, affects cell bioenergetics, and induces autophagy [95].
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Figure 3. Oxidative stress and inflammation induced by SARS-CoV-2 infection. ACE, angiotensin-converting enzyme;
ACE2, angiotensin-converting enzyme 2; AT1R, angiotensin II type-1 receptor; NOX2, NADPH oxidase 2, NF-kB, nuclear
factor kB; ROS, reactive oxygen species; TRXIP, thioredoxin interacting/inhibiting protein; NLRP3, NOD-like receptor

protein 3.

During viral infections beyond an over-production of ROS, there is a decreased an-
tioxidant defense, mainly Glutathione (GSH) depletion, in the host cells that directly or
indirectly favor viral replication [96]. GSH, a tripeptide consisting of cysteine, glycine,
and glutamate, is the main intracellular antioxidant that applies an efficient buffering role
against ROS, through the thiol group of its cysteine which oxidizes to the disulfide form,
then reduced back to the thiol form by glutathione reductase [70].

It has a principal role in cellular signaling and processes, as well as innate immune
response to viruses [70].



Antioxidants 2021, 10, 272

7 0of 23

A significant elevation in blood serum GSH reductase, derived from OS imbalance,
was found in COVID-19 patients, especially when admitted to the intensive care unit [97].
Additionally, mounting evidence supports the concept that the reduced levels of GSH may
underlie the COVID-19 severe clinical outcome and death [98].

4.2. Cross Talks between Oxidative Stress and Inflammation in SARS-CoV-2 Infection

Several studies have demonstrated that SARS-CoV-2 infection and the destruction
of lung cells causes a local immune response, recruiting macrophages and monocytes
that reply to the infection, release cytokines and prime adaptive T and B cell immune
responses. In most patients, this process overcomes the infection. However, sometimes,
a dysfunctional immune response occurs, which leads to a cytokine storm that mediates
general lung inflammation [2,99,100]. Increased plasma concentrations of inflammatory
markers such as C-reactive protein and ferritin, of many cytokines such as TNF-alpha,
IL-1beta, IL-6 and IL-8, and chemokines such as MCP1, together with increased neu-
trophils/lymphocytes ratio [11,99,100], have been associated with gravity of SARS-CoV-2
infection and death [2,19,101].

SARS-CoV-2 infection in type 2 alveolar and other cells activates NOD-like recep-
tor protein 3 (NLRP3), an element of the innate immune system that acts as a pattern
recognition receptor that recognizes damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) [102] and takes part in multiprotein com-
plexes called inflammasomes, which bring together sensor proteins (like NLRP3) [103,104].
NLRP3 inflammasome is very often associated with cellular death by apoptosis and py-
roptosis [105-107], an inflammatory form of programmed cell death [108] that releases
large amounts of pro-inflammatory mediators [109]. Accumulating data have estab-
lished a causal role between the pyroptosis of alveolar type 2, endothelial and immune
cells and the progression of lung damage [110-115]. The contemporary activation of
alveolar macrophages further produces large amounts of proinflammatory cytokines
and chemokines [116,117], which activate endothelial cells [118,119], platelets [120,121]
and neutrophils [122,123] generating platelet neutrophil complexes at endothelium sur-
face [124,125]. This sequestration of platelet neutrophil complexes in the pulmonary
vasculature is the prelude of a highly inflammatory and pro-coagulant situation, a state
called immunothrombosis [119,126,127]. Convincing evidence shows that immunothrom-
bosis is a pivotal determinant of micro-thrombi and micro-emboli generation in the alveolar
capillary circulation [128,129], of fibrin deposition within the alveoli, and in some cases
of disseminated intravascular coagulation [130-132]. Furthermore, the huge associated
increase of activated neutrophils in lung interstitial tissue and alveoli [133] can discharge
high levels of extremely cytotoxic neutrophil extracellular traps [133]. These events play a
crucial part in determining intra-lung cytokine storm and the consequent tissue damage
that is a peculiarity of ARDS, an inflammatory disease with pulmonary epithelial and
capillary endothelial cells dysfunction, alveolar macrophages and neutrophils infiltration,
cell death, and fibrosis [134].

While it is likely that lung and other tissue damages in SARS-CoV-2 infection are the
results of multifactorial mechanisms, very recent studies indicate that ROS may play a major
role in the initiation and progression of this inflammatory process [135,136]. In this context,
it has been reported that OS triggers the NLRP3 inflammasome [137,138]. Although it is
conceivable that other pathological pathways participate in NLRP3 induction [139-141],
OS activates NLRP3 inflammasome through NF-kB and thioredoxin interacting/inhibiting
protein [135-138,142,143] activation. In addition, NF-kB up-regulates IL-18 and IL-1beta
expression, further increasing NLRP3 inflammasome [141,143,144], as shown in Figure
3. This OS-induced overactivation of NLRP3 inflammasome may play a key role in the
pathogenesis of severe SARS-CoV-2 infection. In fact, when the innate response cannot
clear the infection, the resulting NLRP3 hyperactivation is harmful, leading to perturbation
of mitochondrial function, the release of DAMPS and mounting pyroptosis [102-104]
determining virus propagation and massive destruction of affected tissues [145,146].
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5. Rationale for Antioxidant and Anti-Inflammatory Therapies against
COVID-19 Complications

5.1. Radical Scavengers

Modulation of the intracellular redox state is a pivotal strategy that viruses use to
manipulate host cell machinery to their advantage [68]. Accordingly, recent studies have
focused on redox-sensitive pathways as novel cell-based targets for therapies designed to
stop both viral replication and virus-induced inflammation. Since respiratory viruses not
only improve ROS production but also impair cellular defense systems, the use of radical
scavengers has long been considered to be a potential therapeutical approach [69,70].

In the COVID-19 pandemic, the search for alternative therapies for the treatment of
coronavirus diseases is of great importance; in this context, antioxidant therapies have
been proposed as a potential treatment, preventive and/or adjuvant against SARS-CoV-2.

The most encouraging compounds comprise GSH and its precursor N-acetylcysteine
(NAC). NAC is a natural antioxidant derived from plants especially from the Allium
species, whose thiol group directly scavenges ROS and helps GSH synthesis [147]. Since
NAC is applied in a broad range of conditions to restore GSH depletion it has been
suggested as a nutraceutical that might aid the control of RNA viruses including influenza
and coronavirus [148].

It is well recognized that the interaction of viral S protein with ACE2 is an important
step in the viral replication cycle [24,25]. The RBD of the viral S protein and ACE2 have
several cysteine residues [149,150]; interestingly, it has recently been found that the binding
affinity is significantly impaired when all the disulfide bonds of both ACE2 and SARS-
CoV/CoV-2 S proteins are reduced to thiol groups [149,150]. These facts are consistent
with the view that the reduction of disulfides into sulthydryl groups completely impairs
the binding of SARS-CoV/CoV-2 S protein to ACE2 and provide a molecular basis for the
COVID-19 infection severity due to OS [149,150].

Based on the protective role of NAC in experimental models of influenza and other
viruses [151,152], it has recently been suggested that NAC may be used both in the COVID-
19 prevention and in therapy [153]. Recently, NAC has been demonstrated to also exert
protective mechanisms against a variety of COVID-19 associated conditions including
cardiovascular diseases [154]. Administration of NAC has also been considered among the
possible strategies aimed at protecting endothelial function and restricting microthrombosis
in severe forms of the COVID-19 disease [155]. A potential role of NAC and copper in
combination with candidate antiviral treatments against SARS-CoV-2, such as remdesivir,
has been hypothesized based on a systematic literature search [156]. Clearly, these possible
anti-COVID-19 mechanisms and properties of NAC need to be confirmed in controlled clini-
cal trials [157,158]. In particular, the results of “A Study of N-acetylcysteine in Patients with
COVID-19 Infection” (NCT04374461) aimed at evaluating the effect of NAC (iv; 6 g/day)
administration as an adjuvant treatment in patients with severe COVID-19 symptoms will
help to corroborate the potential therapeutic properties of this thiol in COVID 19 patients.
The patients were enrolled into two separate arms and the mechanically ventilated and /or
managed in a critical-care arm is closed to accrual as of September 2020 [159].

A further mechanism that has recently been proposed is the possibility that NAC
further improves the stimulation of Nuclear factor erythroid 2 p45-related factor2 (NRF2)
by OS, which promotes the transcription of phase II enzyme genes and downregulates
inflammation [160]. At the same time, NAC prevents the OS-mediated activation of NF-«B
and biochemical pathways upregulating pro-inflammatory genes [161]. NAC also reduced
the intracellular hydrogen peroxide concentration and restored the intracellular total thiol
contents by impeding NF-«B translocation to the cellular nucleus and phosphorylation of
P38 mitogen-activated protein kinase [162].

Taken together, the results of experimental and clinical studies available so far indi-
cate that NAC acts in a variety of potential therapeutic target pathways involved in the
pathophysiology of SARS-CoV-2 infection.
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It is well recognized that during viral infections, intracellular GSH depletion is a
common event that is central for viral replication [97], and several in vitro and in vivo
studies have found that GSH administration blocks viral replication through redox state
modulation [70]. An improving GSH molecule is I-152, a combination of NAC and s-acetyl-
mercaptoethylamine (cysteamine, MEA) that can release NAC and MEA thus increasing
GSH. Its antiviral efficacy has been evidenced in in vitro and in vivo models [163]. In-
terestingly, a case report study showed that the repetitive use of both 2000 mg of oral
administration and intravenous injection of GSH was effective at relieving COVID-19
severe respiratory symptoms, demonstrating for the first time the usefulness of this antiox-
idant therapy for COVID-19 patients [164].

As far as Vitamin C is concerned, its important anti-inflammatory, immunomodulating,
antioxidant, antithrombotic and antiviral properties are well known [165] as a contributor
in cytokine down-regulation and ROS lowering via attenuation of NF-kB activation.

Vitamin C deficiency in gulonolactone Loxidase-knockout mice [166] showed en-
hanced Neutrophil Extracellular Traps (NETs) in the lungs of septic animals and increased
circulating cell-free DNA suggesting that vitamin C is a novel regulator of NETosis, which
is a particular cell death [167] implicated in the response to fighting COVID-19 [168].

The pharmacological effects of Vitamin C that could make it a potential option for
prevention and treatment of COVID-19 have recently been reviewed [169]. Clinicians using
intravenous Vitamin C in severely ill COVID-19 patients have reported positive clinical
effects upon administration of 3 g every 6 h, together with steroids and anti-coagulants [170].
There are currently several clinical trials registered on Clinicaltrials.gov investigating
Vitamin C (oral or intravenous) with or without other treatments for COVID-19. The
largest registered trial is the Lessening Organ Dysfunction with Vitamin C-COVID (LOVIT-
COVID) trial in Canada, which is recruiting 800 patients who are randomly assigned to
Vitamin C (intravenous, 50 mg/kg every 6 h) or a placebo for 96 h, i.e., equivalent to
15 g/day (NCT04401150). This protocol has also been added as a Vitamin C arm in the
Randomized, Embedded, Multifactorial Adaptive Platform Trial for Community-Acquired
Pneumonia (REMAP-CAP; NCT02735707). The study design provides further rationale for
the use of Vitamin C in COVID-19 patients [171].

A case series of 17 COVID-19 patients who were given 1 g of intravenous Vitamin C
every 8 h for 3 days reported decreased mortality, decreased intubation and mechanical
ventilation need and a significant decrease in inflammatory markers, including ferritin
and D-dimer, and a trend towards decreasing FiO2 requirements [172]. These parameters
are under investigation in the “Intravenous Vitamin C Administration in Coronavirus
(COVID-19) and Decreased Oxygenation (AVoCaDO), NCT04357782” clinical trial in which
subjects administered with intravenous Vitamin C are supposed to be at lower risk of
respiratory failure worsening and reduced inflammation markers increase. As of October
13, 2020, recruitment has been completed.

Whether or not Vitamin C supplementation will consistently prevent conversion to
the critical phase of COVID-19 has yet to be determined, but given its favorable safety
profile and low cost, and the frequency of its deficiency in respiratory infections, it may be
worthwhile testing patients” vitamin C status and treating them.

5.2. NRF2 Activators

NRF2 is a leading transcription factor that targets genes coding for antioxidant pro-
teins and detoxification enzymes [161]. NRF2 regulates the basal and induced expression of
an array of antioxidant response element (ARE-dependent genes, such as heme-oxygenase
(HO)-1) to regulate the physiological and pathophysiological outcomes of oxidant expo-
sure. Under basal conditions, NRF2-dependent transcription is blocked by its negative
regulator, Kelch-like enoyl-CoA hydratase-associated proteinl (Keap-1); when cells are
exposed to OS or electrophiles, NRF2 accumulates in the nucleus and drives its target
genes expression [160].
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Several studies support the concept that viral infections interfere with antioxidative
systems, causing an imbalance between oxidative and antioxidative status and subsequent
oxidative cell injuries [68-71]. In particular, while exposure to many pro-oxidants induces
NREF2 activation and upregulation of ARE gene expression, respiratory viral infections often
inhibit NRF2 pathway and/or activate NF-kB transcription factor, resulting in inflammation
and oxidative injury [173]. The activation or inhibition of NRF2 in host cells is dependent
on factors such as the stage of infection [174] or the peculiar viral propagation mechanisms
by which cell death and release of viruses are caused [175]. A first key demonstration that
SARS-CoV-2 virus deprives the host cells of this essential cytoprotective pathway stems
from the recent evidence indicating that NRF2 pathway was repressed in lung biopsies of
patients affected by SARS-CoV-2 infection [176].

There is a reciprocal crosstalk between NRF2 and NF-kB when innate immune cells
are enrolled in inflamed tissues [177-179]. In in vitro studies, subsequent to infection with
SARS-CoV, NF-«B was reported to switch on in mice lungs and in human macrophages;
on the contrary, NF-«B inhibition decreased inflammation and ameliorates survival in
SARS-CoV-infected mice [180,181]. Therefore, while NRF2 suppression may be associated
with high-grade NF-kB activation and consequently with inflammation, activation of NRF2
by specific drugs may delimit NF-«kB activity in patients with SARS-CoV-2 infection.

Increasing evidence supports the concept that pharmacological activation of NRF2
may be a promising adjuvant therapy against SARS-CoV-2 infection [182]. In particular,
NRF2 inducers may protect against the excessive inflammatory response in COVID-19
patients through different mechanisms: host cell protection, anti-inflammatory phenotype
activation, thus preventing uncontrolled proinflammatory cytokines production, pyroptosis
and viral propagation inhibition [182].

NRF2 can be triggered by pharmacological inducers that target Keapl; in fact, a lot of
NRF2 inducers, including dimethyl fumarate (DMEF), sulforaphane, and bardoxolone methyl,
are electrophiles that alter cysteine sensors of Keapl and disarm its repressor function [182].

An important issue is whether NRF2 activators may reduce SARS-CoV-2 replication.
In this context, the NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved DMF
suppress SARS-CoV-2 replication and the expression of associated inflammatory genes
in cultured cells [176]. In the opinion of the authors [176], the fact that 4-OI suppressed
to a great degree the IFN antiviral response but maintained the capacity to inhibit viral
replication and attenuate the inflammatory response suggests the existence of unrecognized
cellular pathways that work independently of IFNs.

Many reports have described numerous antiviral effects for HO-1 against a broad
spectrum of viruses. In many cases, the mechanism of action of HO-1 products has been
recognized, showing direct effects on virus components or cellular processes that interfere
with virus replication [183]. Although there are no data so far for targeting HO-1 on
SARS-CoV-2, it has been proposed that inducing HO-1 expression may avoid SARS-CoV-2-
induced lung complications by means of its antiviral, anti-inflammatory, antithrombotic
and antifibrotic properties [184].

Another important point is whether NRF2 can suppress SARS-CoV-2 access into the
host cells, and in this scenario, a key role is carried out by TMPRSS2 [56]. PB125, a strong
NRF2 inducer, was able to significantly downregulate ACE2 and TMPRSS2 expression
in HEPG2 cells [185]. Intriguingly, it also induced a strong upregulation of the human
antiprotease plasminogen activator inhibitor-1 (PAI-1) expression, a potent TMPRSS2
inhibitor [186]. Accordingly, the authors suggest that PB125 treatment might reduce the
SARS-CoV-2 capacity to bind to a host cell and to provoke S protein activation [185].
In the same study, PB125 was also shown to markedly downregulate genes encoding
cytokines [185], many of which were exactly recognized in the cytokine storm seen in lethal
cases of COVID-19 [187]. Moreover, it was previously reported that bromhexine, an FDA-
approved ingredient in mucolytic cough suppressants, had the capacity to inhibit TMPRSS2
activity and to reduce prostate cancer enlargement and metastases [188]. At present, the
mechanism involved in bromhexine-induced TMPRSS2 activity suppression is unknown.
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However, ambroxol, a metabolite of bromhexine, which has been approved by the FDA
and has been established for decades for the treatment of acute and chronic respiratory
diseases [189], has also been found to exert an excellent anti-inflammatory and antioxidant
activity and to elicit a remarkable induction of NRF2 associated with a concomitant decrease
in NF-kB expression in mice [190]. The bromhexine effectiveness in SARS-CoV-2 infection
in a small open-label randomized clinical was recently reported by Ansarin et al. [191].
They found that bromhexine administration was associated with a significant reduction in
intensive care unit admissions, intubation and death suggesting that TMPRSS2 suppression
may contribute to clinically ameliorate SARS-CoV-2 infection (Figure 4).

SARS-CoV-2
«:é!T‘J/-
= :‘C
B S
b g
( _-\ NREF2 activators

NRF2 activation

¥ 1

Virus NF-kB TMPRSS2
replication activation activity

Figure 4. Potential beneficial effects of Nrf2 activators against SARS-CoV2-infection. NRF2, nuclear factor erythroid 2
p45-related factor 2; NF-kB, nuclear Factor kB; TMPRSS2, transmembrane protease serine 2.

Finally, DMF, which is now used as an anti-inflammatory drug in relapsing-remitting
Multiple Sclerosis [192], could easily be repurposed and verified in clinical trials as a small
molecule inhibitor of SARS-CoV-2 replication and inflammation-induced pathology in
COVID19 patients.

Likewise, the wealth of safety and efficacy information for other NRF2 activators, such
as sulforaphane and bardoxolone methyl, which are now in advanced clinical trials for other
indications, offers a clear means for their testing in COVID-19 randomized clinical trials. If
confirmed, this therapeutic strategy could be rapidly mobilized to improve recovery and
decrease the need for mechanical ventilation in severe COVID-19 patients, helping to relieve
the big strain that is currently being experienced by intensive care units worldwide [182].

5.3. Delivery of Soluble ACE2

SARS-CoV-2 infection causes ACE2 shedding from tissue, thus effectively lowering the
ACE?2 receptor level in infected cells [28,48]. In this regard, it has been suggested that delivery
of recombinant ACE2 protein may be a treatment to stop SARS-CoV-2 spreading, and also to
preserve RAS system and inhibit ROS generation by NOX [28]. Interestingly, in an in vitro and
in vivo study, NOX4-derived ROS production was demonstrated to be modulated by ACE2 [193].
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A new in vitro study demonstrated that the fusion protein of recombinant human
[rth] ACE2 with a Fc fragment showed high affinity binding to the RBD of SARS-CoV-2
and potently neutralized SARS-CoV-2 entry [194]. In addition, a recent paper strongly
supported the efficacy of rhACE2 against SARS-CoV-2 infection [195]. In particular, the
authors reported that clinical-grade rh soluble ACE2 exhibited strong inhibitory activity
against SARS-CoV-2 in cell cultures and in human blood vessels and kidney engineered
copies [184]. Very interestingly, in a recent case report, Zoufaly et al. [196] found that
the delivery of rhACE2 in a SARS-CoV-2 patient caused a marked clinical improvement
associated with reduction of inflammatory markers and of Ang II with a striking rise of
Ang 1-7 and Ang 1-9. Intriguingly, SARS-CoV-2 viremia was significantly reduced after
the first day of administration and thereafter it remained undetectable [196].

5.4. Inhibitors of NLRP3 Inflammasome

Given the strong inflammatory potential of NLRP3 inflammasome in the pathogenesis
of different inflammatory diseases, many efforts have been made in the last few years in the
search of NLRP3 inhibitors. As recently reviewed [197], many natural products and pharma-
ceutical drugs have been identified as NLRP3 inhibitors. Among natural and pharmaceutical
products, oridonin (derived from Rabdosia rubescens plant) and parthenolide (derived from
feverfew plant) as well as Bay 11-7082 have been reported to strongly suppress NLRP3 in-
flammasome in experimental models [198,199]. Besides inhibiting NLRP3, parthenolide and
Bay 11-7082 have also been shown to lower NF-kB activation and to prevent lung inflamma-
tion in animals affected by SARS-CoV [199]. Another drug reducing NLRP3 inflammasome
activity and IL-1beta secretion in cells infected with RNA viruses is glyburide, a sulfonylurea
extensively used in the treatment of type 2 diabetes [200,201]. Likewise, tranilast, a drug
used for allergic conditions, was shown to reduce NF-kB activation and NLRP3 assembly in
animal models of inflammatory diseases [202]. Similarly, colchicine, a drug used in autoin-
flammatory diseases for its effect of preventing adhesion and recruitment of neutrophils
at endothelial surface [203], can also suppress NLRP3 inflammasome and production of
IL-1beta and IL-18 [204]. Finally, mefenamic acid and flufenamic acid, belonging to the
group of non-steroidal anti-inflammatory drugs, by inhibiting NLRP3 inflammasome and
IL-1beta secretion, have been reported to strongly suppress viral replication independent of
their cyclooxygenase-1 mediated anti-inflammatory activity [205,206]. Because of the key
role of NLRP3 inflammasome activation in the pathogenesis of SARS-CoVs diseases and the
promising results obtained by inhibitors of the NLRP3 inflammasome in pre-clinical and/or
clinical studies [197], it can be hypothesized that its inhibition may potentially decrease
tissue inflammation also in COVID-19.

5.5. Glucocorticoids (GCs) and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

It is well established that GCs control inflammation through pleiotropic mecha-
nisms [207,208]. In particular, GCs block the activation of transcription factors that mediate
inflammatory responses, such as NF-kB and activator protein 1 [207], thus suppress-
ing the synthesis of many pro-inflammatory cytokines and of inducible nitric oxide syn-
thase. [207,209]. Furthermore, GCs reduce cyclooxygenase 2 activity by inducing the NF-kB
inhibitor glucocorticoid-induced leucine zipper protein, thus weakening prostaglandin
release [210]. GCs also inhibit adhesion molecule expression in endothelia cells and in-
tegrins in immune cells so diminishing leukocyte recruitment [207,211,212]. In addition,
GCs reverse macrophages to an anti-inflammatory state, promote resolution of inflam-
mation, and weaken antigen presentation in dendritic cells [207,213-215]. In view of this
formidable strength, GCs are considered the cornerstone of the anti-inflammatory and
immunosuppressive therapy. At the beginning of COVID-19 pandemic there were many
perplexities for handling an infectious disease with potent immunosuppressive agents
like GCs. Then, on the basis of the promising results derived from case reports and small
observational studies, a series of large-scale randomized clinical trials were started. In
the Randomised Evaluation of COVID-19 Therapy (RECOVERY, NCT04381936) trial [216],
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patients (n. 2104) were randomly assigned to receive oral or intravenous dexamethasone
(6 mg once daily) for up to 10 days or to receive usual care (n. 4321). The preliminary results
showed that in COVID-19 hospitalized patients, the use of dexamethasone significantly
reduced 28-day mortality among those who were receiving either invasive mechanical
ventilation or oxygen alone. On the contrary, dexamethasone had no effect among patients
not requiring respiratory support. In the prospective meta-analysis of the Rapid Evidence
Appraisal for COVID-19 Therapies (REACT) Working Group of the World Health Organization
(WHO) [217], the authors analyzed pooled data from seven randomized clinical trials evaluating
the efficacy of GCs in 1703 critically ill patients with COVID-19. Similarly to the RECOVERY
study [216], the REACT study demonstrated that low-dose dexamethasone, compared with
usual care or placebo, reduced all-cause mortality in hospitalized patients with COVID-19
who required respiratory support. Following these studies, the WHO released two recommen-
dations establishing that GCs (dexamethasone per os or intravenously and hydrocortisone
intravenously) should be given for 7 to 10 days only in critical and severe COVID-19 patients.

As for NSAIDs, it has been established that they operate by suppressing cyclooxyge-
nase (COX) 1 and 2, thus limiting the synthesis of prostaglandins, which play a crucial role
in the pathogenesis of fever and inflammation [218]. NSAIDs are habitually employed in
SARS-CoV-2 infection to lower fever and alleviate muscle pain, but whether NSAIDs are
helpful or damaging to COVID-19 patients is currently uncertain, and a cautious strategy is
suggested [219-221]. Available data so far on the effects of chronic treatment with NSAIDs
on SARS-CoV-2 infection are few, and have not been derived from randomized clinical
trials. In particular, a large case control study showed that chronic treatment with NSAIDs
was not associated with risk of COVID-19 infection or COVID-19 severity [222]. Similar re-
sults stem from a recent multicenter retrospective cohort study of hospitalized patients with
COVID-19 demonstrating a lack of association between the pre-hospital use of NSAIDs
and mortality [223]. Additionally, in a particular setting of COVID-19 patients with chronic
inflammatory rheumatic disease, the prior treatment with NSAIDs did not influence the
risk of hospitalization [224]. Concerning the potential role of NSAIDs as adjuvant therapy
in COVID-19 patients, a recent pilot study showed that adjuvant treatment with celecoxib,
a selective inhibitor of COX2, improved the recovery in non-severe and severe cases of
SARS-CoV-2 patients and impeded the evolution to a critical step [225].

Although the WHO, the European Medicines Agency (EMA) and the United Kingdom
National Health Service have stated that there is currently no scientific evidence that NSAIDs
augment the risk or worsen SARS-CoV-2 infection, and that there is no reason for patients
who are taking NSAIDs for chronic diseases to stop taking them, from a clinical point of view,
it is now recommended that patients with COVID-19 should use paracetamol rather than
NSAIDs [226]. This advice is further strengthened by previous clinical trials in non-SARS-CoV-2
pulmonary infectious diseases that have suggested avoiding these drugs (reviewed in [227]).

6. Conclusions

The redox-regulated intracellular pathways triggered and used by viruses may consti-
tute a new and encouraging target for novel approaches in the control and therapy of viral
infections. In this context, it has been demonstrated that respiratory viral infections and
in particular SARS-CoV-2, despite a dysregulation of ROS production, inhibit NRF2 and
activate NF-kB pathways, resulting in inflammation and oxidative injury. The outstanding
results from experimental studies available so far clearly indicate the need to also test NRF2
activators in randomized clinical trials in patients with SARS-CoV-2 infection.
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Abbreviations

ACE Angiotensin Converting Enzyme

Ang Angiotensin

ATIR Angiotensin II Type-1 Receptor

ADAM17 A Disintegrin And Metalloproteinasel7
COX cyclooxygenase

COVID-19 Coronavirus disease 2019

DAMPs damage-associated molecular patterns
DMF Dimethyl Fumarate

EMA European Medicines Agency

FiO2 Fraction Of Inspired Oxygen

FP Fusion protein

GCs Glucocorticoids

GSH Glutathione

HO Heme-Oxygenase

Hb Hemoglobin

Keap-1 Kelch-like enoyl-CoA hydratase-associated protein 1
IFN Interferon

IL Interleukin

MAVS Mitochondrial antiviral signaling system;
MCP1 monocyte chemoattractant protein-1

MEA s-acetyl-mercaptoethylamine

MERS Middle East respiratory syndrome

NAC N-acetylcysteine

NETs Neutrophil extracellular traps

NLRP3 NOD-like receptors protein 3

NRP1 Neuropilin-1

NOX Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
NF-kB Nuclear Factor-«B

NRF2 Nuclear factor erythroid 2 p45-related factor2
NSAIDs non-steroidal anti-inflammatory drugs
4-0O1 4-Octyl-Itaconate

Orf9b Open reading frame-9b

(O] Oxidative stress

OxPLs Oxidized phospholipids

PAI-1 Plasminogen Activator Inhibitor-1

PAMPs Pathogen-associated molecular patterns
RAS Renin-angiotensin system

RBD Receptor-binding domain

rh Recombinant Human

ROS Reactive oxygen species

SARS-CoV-2  Severe Acute Respiratory Syndrome (SARS)-like Coronavirus
S protein Viral Membrane Spike protein

S1 Receptor-binding subunit

S2 Membrane fusion subunit

scRNA-seq  single cell RNA-sequence

TRXIP Thioredoxin Interacting /Inhibiting Protein;
TOM Translocase of Outer Membrane

TMPRSS2 Transmembrane protease serine 2

WHO World Health Organization
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